
1.  Introduction
Sulfur plays an important role in the stratosphere through chemical and radiative processes. Specifically, sulfate 
aerosols provide surfaces for ozone-depleting heterogeneous chemistry, absorb and scatter shortwave radiation, 
and absorb longwave radiation (Andronova et al., 1999; Ramachandran et al., 2000; Robock, 2000; Stenchikov 
et al., 1998; Stratospheric Processes and their Role in Climate [SPARC], 2010). The major source and driver 
of variability in the stratospheric sulfur budget are volcanic eruptions, which inject sulfur dioxide and sulfate 
aerosols into the stratosphere (Kremser et al., 2016). Once emitted, volcanic sulfur dioxide rapidly converts into 
gas-phase sulfuric acid or sulfate aerosols in the troposphere, but the process takes a few weeks in the stratosphere 
(Bluth et al., 1992).

The potential climate effect of sulfate aerosol from volcanic eruptions is more limited in the troposphere compared 
to the stratosphere due to the efficient wet removal by tropospheric clouds and dry deposition at the surface. On the 
other hand, powerful explosive volcanic eruptions that reach the lower stratosphere have led to perturba tions  to the 
Earth's global radiative balance that are detectable in observational temperature records, cooling the surface and 
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Plain Language Summary  Major volcanic eruptions emit sulfur dioxide into the stratosphere 
and affect the Earth's global radiative balance as well as the stratospheric sulfur abundance. The GFDL Earth 
System Model (ESM4.1) previously uses prescribed aerosol optical properties, and in this paper, we replace 
it with explicit volcanic emissions to study the volcanic contribution to the stratospheric sulfur cycle and its 
impact. We simulate years from 1989 to 2014, with a focus on the Mt. Pinatubo eruption as a benchmark. We 
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troposphere (Canty et al., 2013; McCormick et al., 1995; Minnis et al., 1993; Robock, 2000; Santer et al., 2014; 
Soden, 2002). The greater climate impact of stratospheric eruptions is mainly from the longer aerosol lifetime in 
the stratosphere, which allows volcanic aerosols to be distributed globally (Cole-Dai, 2010). Large volcanic erup-
tions are often considered a natural analog for sulfate aerosol geoengineering (or solar radiation management, 
or solar radiation modification, or stratospheric aerosol injection), the proposal to deliberately inject aerosol in 
the stratosphere to increase the albedo of the Earth and counter part of the warming associated with increasing 
greenhouse gas concentrations. In terms of sulfate forcing efficiency (sulfate forcing per unit of SO2 emitted), 
eruptive volcanic sulfate is 5 times greater than anthropogenic sulfate (Ge et al., 2016). Additionally, stratospheric 
chemistry's response to major volcanic eruptions such as Mt. Pinatubo highlights the impact of volcanic eruptions 
on stratospheric ozone, whose mixing ratio decreases in the lower stratosphere and increases in the middle strat-
osphere, causing a net reduction in ozone under conditions with increased chlorine loading (Austin et al., 2013).

While the impact of major volcanic eruptions on the stratosphere has garnered increasing interest in recent years, 
modeling efforts to fully account for the chemistry and climate effects of direct volcanic sulfur injections into 
the stratosphere remain limited. In most Earth system models, the chemistry and climate effects of volcanic 
sulfate aerosols are typically represented by prescribing aerosol properties, such as stratospheric aerosol optical 
depth (AOD) and Surface Area Density (SAD), based on satellite observations (Zanchettin et al., 2016). A few 
studies have implemented the capability to simulate volcanic aerosol properties driven by volcanic emissions in 
their models (English et al., 2013; Ivy et al., 2017; Mills et al., 2016; Solomon et al., 2016; Timmreck, Graf, & 
Feichter, 1999, Timmreck, Graf, & Kirchner, 1999); these studies have improved the treatment of volcanic prop-
erties to realistically capture the distribution and effects of stratospheric sulfate aerosols.

The 1991 Mt. Pinatubo eruption is the largest eruption of the satellite record (1980-present), and observations 
from the event provided unprecedented data to aid modeling efforts, albeit precise quantification of the magni-
tude and altitude of the volcanic injection remains uncertain (Guo et al., 2004; Thomason, 1992). Past modeling 
studies of the Mt. Pinatubo eruption adopted different SO2 emission mass and injection heights within the ranges 
identified by observations (Aquila et al., 2012, 2013; Brühl et al., 2014; Dhomse et al., 2014; English et al., 2013; 
Mills et al., 2016; Niemeier et al., 2009; Oman et al., 2006; Pitari & Mancini, 2002; Sheng et al., 2015a, 2015b; 
Toohey et al., 2011; Timmreck, Graf, & Feichter, 1999, Timmreck, Graf, & Kirchner, 1999; Zhao et al., 1995). 
Dhomse et al.  (2014) and Sheng et al.  (2015b) found the best agreement with Stratospheric Aerosol and Gas 
Experiment (SAGE) II observations when they prescribed an SO2 injection between 10 and 14 Tg of SO2. Mills 
et  al.  (2016) found that a 10  Tg SO2 emissions in the Community Earth System Model/Whole Atmosphere 
Community Climate Model simulations produce a good agreement with the Total Ozone Mapping Spectrometer 
(TOMS, Bluth et al., 1992) and Television Infrared Observation Satellite Operational Vertical Sounder observa-
tions of volcanic SO2 mass approximately a week after the eruption, which is when 99% of ice particles and ash, 
the portion that the authors considered “climatically relevant” were removed (Guo et al., 2004). They justified 
using an SO2 injection that is lower than the observed by noting that models do not consider in-plume processes 
such as SO2 scavenging by ash and ice particles, which are present in nature. Mills et al. (2016) also found that 
when emitting 12 Tg SO2, their simulated AOD was overestimated compared to lidar observations. On the higher 
end of the range, Aquila et al. (2012) chose 20 Tg of SO2 based on TOMS and found that emitting 5 Tg of SO2 
does not provide enough positive radiative feedback to sustain the lofting of the volcanic aerosol.

Similarly, past studies assumed widely varying SO2 injection heights. Lidar observations detected aerosol 
layers at 19–23 km (Winker & Osborn, 1992), and Antuña et al. (2002) found the SO2 injection height range 
to be 18–25 km. Aquila et al. (2012) performed an ensemble of experiments, with an initial injection height of 
16–18 km and found that their model responded quickly to radiatively interacting aerosols, lofting the volcanic 
aerosol; whereas, Timmreck, Graf, and Feichter (1999) and Zhao et al. (1995) based their injection height on 
SAGE II observations at higher altitudes. The interactive stratospheric aerosol model intercomparison project by 
Timmreck et al. (2018, Table 9) and Quaglia et al. (2023; Figure 1) summarized the wide range of SO2 emissions 
used in past modeling studies, with emissions ranging from 5 to 20 Tg and injection height ranging from 15 to 
30 km. Lastly, for models that do not interactively simulate aerosol distribution, sulfate dry effective radius used 
for gravitational settling and optical properties is also varied in past literature, ranging from 0.166 to 1 μm (Aquila 
et al., 2012; Lacis, 2015; Li & Min, 2002; Li et al., 2001)). For models that simulate aerosol distribution, the 
effective radius varies depending on location, and they are calculated from Mie theory by integrating the scatter-
ing and extinction coefficients or using Mie-theory-based lookup tables (Quaglia et al., 2023).
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Such a wide range of parameters used to model the same eruption is an indication that models are sensitive to 
the input for volcanic emissions. By testing our model's sensitivity to volcanic SO2 injection amount, height, and 
particle size, we could gain insights into the critical processes associated with volcanic aerosols. Sulfate aerosol 
microphysics (i.e., formation and growth), co-emission with other species such as ash (Zhu et al., 2020), which 
are currently absent in most models; as well as aerosols' interaction with radiation and atmospheric dynamic 
biases in circulation (e.g., vertical lofting and transport).

In this study, we describe the improvements implemented in the Atmospheric Model (AM4.1) of the GFDL 
Earth System Model (ESM4.1) to replace the previously prescribed distributions of aerosol optical properties 
with the new capability to simulate stratospheric sulfur aerosols prognostically, driven by volcanic as well as 
non-volcanic sources. We show that an interactive representation of the stratospheric sulfur cycle in global 
climate models, driven by explicit volcanic emissions of aerosol precursors and coupled with the chemistry and 
radiation schemes, could capture the multiple interactions between the sulfur cycle and climate change and varia-
bility. We used this newly developed model capability to simulate the 1989 to 2014 period, focusing on the 1991 
Mt. Pinatubo volcanic eruption as a perturbation and benchmark event for model evaluation. We share insights 
learned from this experiment and discuss comparisons of our results against observations as well as the control 
ESM4.1 version with prescribed volcanic aerosol forcing.

Figure 1.  SO2 emissions, injection height, and sulfate dry effective radius parameters used in sensitivity simulations.
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2.  Model Description
In this study we use GFDL Earth System Model version 4.1 (ESM4.1; Dunne et al., 2020) and focus on updating 
its atmospheric component, AM4.1 (Horowitz et  al.,  2020). AM4.1 is a standalone atmospheric physics and 
chemistry model for atmospheric applications and includes interactive tropospheric and stratospheric gas-phase 
and aerosol chemistry. Its mass-based aerosol scheme transports 18 prognostic aerosol tracers, including bulk 
sulfate aerosols (SO4 2−). The combined tropospheric and stratospheric chemistry scheme includes 58 prognostic 
gas-phase tracers, five prognostic ideal tracers, and 40 non-transported diagnostic chemical tracers, with 43 
photolysis reactions, 190 gas-phase kinetic reactions, and 15 heterogeneous reactions. In the standard AM4.1 
configuration, sulfur is assumed to be in aerosol form, and gas-phase H2SO4 is not explicitly represented. Sulfur 
tracers included in the chemical mechanism are sulfur dioxide (SO2), sulfate aerosol, and dimethyl sulfide. 
The heterogeneous oxidation of SO2 to sulfate on pre-existing sulfate and nitrate aerosols, following Zheng 
et al. (2015), is also included.

2.1.  Model Updates

We build on the bulk aerosol approach used in AM4.1, in which total sulfate mass is a prognostic variable, to calcu-
late the stratospheric aerosol distribution interactively and prognostically. Following Mills et al. (2016, 2017), we 
implemented volcanic SO2 emissions from the VolcanEESM (Volcanic Emissions for Earth System Models) 
database compiled by Neely and Schmidt (2016). This database includes SO2 emissions from volcanic eruptions 
injected into both the troposphere and stratosphere. Total volcanic SO2 emissions are uniformly distributed verti-
cally between the minimum and maximum altitudes of the eruption plume and emitted in the model grid box 
containing the latitude and longitude of the volcano. Similarly to Mills et al. (2016, 2017), volcanic SO2 is emitted 
at a constant emission rate over a 6-hr period between 12:00 UTC and 18:00 UTC on the day of the eruption. We 
also scale the heterogeneous uptake of SO2 by NO2 to avoid destabilization in the simulation run.

The calculation of volcanic aerosol SAD for stratospheric heterogeneous reaction rates is also updated. Instead 
of calculating SAD from aerosol extinction centered at 1.0  μm using a simple parameterization (Thomason 
et al., 1997), we used the emission-driven sulfate concentrations, with an assumed effective radius of 0.166 μm. 
To account for both volcanic and non-volcanic sources of stratospheric sulfate aerosols, we also added carbonyl 
sulfide (OCS) to the existing chemical mechanism, including its oxidation and photolysis to SO2 in the stratosphere.

Lower boundary conditions for OCS were specified based on data from Montzka et al. (2004). For stratospheric 
sulfate aerosol removal, we implemented the sedimentation of sulfate aerosols in the stratosphere, based on the 
existing dust and sea salt aerosol sedimentation scheme, and assign a sulfate dry effective radius for the calcula-
tion. We note here that sectional or modal microphysics approach might produce different results, which would 
affect sedimentation (i.e., Dhomse et al., 2021; Visioni et al., 2022), and that these results also depend on altitude 
or location.

2.2.  Simulations

We assess the skill of our updated model, including volcanic emissions and sedimentation, by comparing a 1984–
2014 simulation carried out using prescribed volcanic aerosol optical properties (PRESC simulation), analog to 
the previous version of the model, to a simulation that exercises the new capabilities (VOLC simulation), that is, 
with explicit volcanic emissions (replacing the prescribed volcanic optical properties) and sulfate sedimentation. 
The simulations are driven by observed sea-surface temperature and sea-ice from reconstruction, and horizontal 
winds are nudged to NCEP-NCAR reanalysis to facilitate consistent comparisons with observations (Kalnay 
et al., 1996). These simulations are used to test the influence of model updates on stratospheric sulfur distribution 
and AOD. Non-volcanic emissions of aerosols and aerosol precursors, as well as the parameterizations used for 
non-volcanic aerosol, are identical in the PRESC and VOLC simulations.

Given the large range used in the literature for SO2 emissions and injection height from the Mt. Pinatubo eruption, 
we performed sensitivity tests to evaluate the model sensitivity to these inputs. Our default VOLC simulation 
emits 14 Tg volcanic SO2 at a height of 18–20 km. Considering measurement-based emission amounts as well 
as candidates used in previous studies (Section 1), we chose 10, 12, 14, and 20 Tg of SO2 mass emissions and 
injection heights at 16–25, 18–22, 20–22, and 28–30 km (Figure 1).
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The dry effective radius used in the settling parameterization determines the sulfate settling velocity and, conse-
quently, the simulated sulfate burden and distribution. Since in our mass-based aerosol scheme the settling effec-
tive radius is chosen independently from the radius used in the calculation of the aerosol optical properties, we 
also performed a suite of sensitivity tests varying the dry sulfate effective radius. Based on the aerosol radii used 
in previous studies (Aquila et al., 2012; Lacis, 2015; Li & Min, 2002; Li et al., 2001), the radii we tested are 
0.25 μm, which Lacis (2015) used as the effective radius size for mature volcanic aerosols; 0.4 μm, which Aquila 
et al. (2012) calculated based on a lognormally distributed aerosol with a median radius of 0.35 μm and a standard 
deviation of 1.25; 1 μm, which is assumed to be the largest volcanic aerosol size; and 0.166 μm, the settling radius 
used in our default simulation, which is calculated assuming a lognormal distribution with a median radius of 
0.05 μm and a standard deviation of 2, as used by Li et al. (2001) and Li and Min (2002). All simulation param-
eters and experiments are listed in Figure 1 (default simulation parameters are in bold).

3.  Results
3.1.  Comparison With Observations

We use the Mt. Pinatubo eruption as a benchmark event and focus on the months before and after the eruption. 
Figure 2 shows the difference in the monthly average zonal mean SO2 mixing ratio from May to December in 
1991. Since the PRESC simulation does not include SO2 from volcanic sources but does account for that from 
OCS, the VOLC-PRESC difference shown in Figure 2 represents the SO2 from Mt. Pinatubo and Cerro Hudson 
only. In June 1991, when Mt. Pinatubo erupted, the zonal SO2 difference in Figure 2 shows the concentrated 
initial SO2 injection in the VOLC simulation, which created a hotspot. The SO2 plume evolves and spreads merid-
ionally due to transport and stratospheric chemistry over the next few months.

As the SO2 difference decreases with time, we find sulfate rapidly formed after the SO2 mass dispersed. In June, 
when the eruption occurred, there is only a weak sulfate difference between VOLC and PRESC because of a delay 
in its formation from the injected SO2 (Figure 3). In the following months, volcanic SO4 increases while SO2 is 
converted into SO4. The e-folding time of the volcanic SO2 decay corresponds to approximately a month, which 
is consistent with previous modeling studies. SO4 is formed rapidly from SO2 oxidation as shown in Figure 3, and 
its concentration increases with an e-folding time of approximately 1 month, similar to other modeling studies 
(Aquila et al., 2012).

Figure 2.  Differences in simulated monthly average zonal mean SO2 (in ppbv) between the two simulations (VOLC-PRESC) from May to December 1991.



Journal of Advances in Modeling Earth Systems

GAO ET AL.

10.1029/2022MS003532

6 of 13

We also examined the total AOD following the Mt. Pinatubo eruption. Figure 4 shows the spatial AOD difference 
between the VOLC and PRESC experiments. The VOLC-PRESC difference in AOD follows the increase in 
SO4 concentration with time, and it becomes widespread starting from July 1991. As time evolves, the volcanic 
aerosol spreads latitudinally, shifting more toward the Northern Hemisphere, which is consistent with the zonal 
sulfate concentration (Figure 3) and is likely due to circulation.

We also evaluated the AOD from 1999 to 2014 against observations from the Multi-angle Imaging SpectroRadi-
ometer (MISR, Kahn et al., 2009) and Moderate Resolution Imaging Spectroradiometer (Levy et al., 2013) satel-
lite instruments. The time evolution of AOD in VOLC and PRESC simulations overlap and compare similarly 
(except during the Mt. Pinatubo eruption). They also compare well against observations in recent years, despite 
being generally lower than observed (Figure 5).

As mentioned previously, enhanced volcanic aerosols perturb stratospheric chemistry and result in a net decrease 
in the ozone column. Therefore, we evaluated ozone from both the VOLC and the PRESC simulations against 
Solar Backscatter Ultra-Violet multi-satellite merged ozone total column (Frith, 2013) and the National Institute 

Figure 4.  Differences in simulated monthly average total aerosol optical depth between VOLC and PRESC (VOLC-PRESC) for May–December 1991.

Figure 3.  Differences in simulated monthly average zonal mean SO4 mass mixing ratio (μg/kg) between the two simulations (VOLC-PRESC) from May to December 1991.
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of Water and Atmospheric Research-Bodeker Scientific total column ozone database (Bodeker et al., 2005). Both 
simulations reproduce the observed total ozone column well, with the PRESC simulation having a slightly low 
bias in the tropics and the VOLC simulation with a high bias in the northern midlatitudes, and PRESC has a more 
evident ozone depletion post-eruption than VOLC does (Figure 6). Overall, the two schemes show similar skills 
in simulating total column ozone trends.

Figure 5.  Timeseries of total global mean aerosol optical depth for VOLC and PRESC simulations compared against Moderate Resolution Imaging Spectroradiometer 
and Multi-angle Imaging SpectroRadiometer satellite retrievals.

Figure 6.  Comparison of timeseries of total ozone column for the annual mean (a) 90°S–90°N, (b) 25°S–25°N, (c) 
35°N–60°N, (d) 35°S–60°S from the PRESC simulation (red) and the VOLC simulation (blue) against multi-satellite 
merged ozone total column (SBUV, Frith, 2013) in open triangles and the NIWA-BS total column ozone database (Bodeker 
et al., 2005) in closed circles. Correlation coefficients are listed at the top row for NIWA and the bottom row for SBUV.



Journal of Advances in Modeling Earth Systems

GAO ET AL.

10.1029/2022MS003532

8 of 13

3.2.  Model Sensitivity to Injection Parameters

We evaluated the results from the sensitivity tests listed in Figure 1 against the High Resolution Infrared Radi-
ation Sounder (HIRS) observations (Baran & Foot, 1994) (Figure 7). Each sub-plot in Figure 7 shows a group 
of simulations that have varying injection heights (Figure  7a), SO2 emission amount (Figure  7b), or sulfate 
dry effective radius (Figure 7c). The default VOLC simulation, evaluated in the previous section, is in red as a 
reference.

We find that higher injection heights result in a larger sulfate mass burden and a longer atmospheric residence 
time of the sulfate particles, due to slower sedimentation from higher altitudes and slower transport to the tropo-
sphere by the Brewer-Dobson circulation. Next, we explore the sensitivity of sulfate mass burden to the injected 
SO2 emission amount. As expected, since SO2 is a source for sulfate formation, their magnitudes are directly 
proportional, we find that the greater emission amount leads to a higher burden, especially in the initial months. 
Then we checked the sensitivity of sulfate mass burden to sulfate dry effective radius, which is used in the gravi-
tational settling calculations for sulfate sedimentation. We find that the sulfate burden in simulations with bigger 
sulfate particles declines faster, corresponding to shorter lifetimes. This is because sulfate dry effective radius 
directly affects sedimentation efficiency, with larger particles removed faster, leading to a steeper decline for the 
sulfate mass burden.

Our simulations show that sulfate mass burden is qualitatively most sensitive to changes in injection height, then 
emission amount, followed by sulfate dry effective radius, although the three parameters have different units and 
are not quantitatively comparable. It is likely that the sensitivity to injection height is also affected by the dynam-
ics and radiation parameterizations used in the model. Overall, the simulation that results in the best agreement 
with HIRS observations is the one simulating the Mt. Pinatubo eruption with a 20 Tg SO2 injection at 20–22 km 

Figure 7.  Timeseries of the global mass burden of sulfate for sensitivity runs compared against High Resolution Infrared Radiation Sounder with (a) varying injection 
height, (b) varying SO2 emission amount, (c) varying sulfate dry effective radius, and (d) combination of parameters. The default VOLC simulation is in red.
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with the default sulfate dry effective radius of 0.166 μm. These parameters fall within the value range used in 
previous studies; this scenario will be referred to as VOLC_1 hereafter.

Using AOD as a metric, we also find varying parameters affect AOD. As mentioned previously, AOD from both 
VOLC and PRESC simulations compare well against recent satellite data, but observing capabilities were limited 
at the time of the eruption. In Figure 8, we show a comparison against Advanced Very High Resolution Radiom-
eter (AVHRR) data over the oceans, where the observations were performed. Our PRESC and VOLC simulations 
do not capture well the peak AOD observed by AVHRR. Sensitivity tests with varying SO2 emission amounts, 
SO2 injection heights, and sulfate dry effective radii show that AOD is sensitive to all three parameters as well. 
Similar to sulfate mass burden, total AOD is most sensitive to SO2 injection height. Results also suggest that a 
combination of parameter changes is needed to match AVHRR.

It is also worth noting that the best-case scenario VOLC_1 from the sulfate mass burden sensitivity simulations 
is not necessarily the best-matched one when using AOD as the metric, and when compared against AVHRR, 
the sulfate mass burden from every scenario seems to lack representation. Also, although it seems arbitrary to 
just test different heights and amounts, it guides our understanding of the sensitivity of burden and AOD to these 
parameters and the climate response, which would be very important when we investigate the impact of climate 
intervention. For example, for geoengineering purposes, we predict that it would be critical to quantify the short- 
and long-term effects on climate of injecting a specific amount at a certain height.

Lastly, we examined the radiative impacts of our changes in the representation of stratospheric sulfate by compar-
ing the net radiative fluxes at the top of the atmosphere from the PRESC and VOLC_1 simulations (Figure 9). 
We find that the two simulations perform similarly, both capturing the decrease in net flux in the months follow-
ing the Mt. Pinatubo eruption. We also compared the top of the atmosphere near-global (60°S–60°N) radiation 
anomalies against the Earth Radiation Budget Satellite (ERBS) observations (Allan et al., 2014; Liu et al., 2015). 
Figure 10 shows the monthly mean model output and the 72-day mean ERBS observations, both deseasonalized, 
plotted as anomalies from the 1985–1989 base period. The two simulations show similar anomaly trends, indi-
cating that the interactive representation of volcanic stratospheric sulfate aerosol performs similarly to prescribed 
aerosols for the volcanic radiative forcing in our model.

4.  Conclusion
Here we present an updated version of the atmospheric component AM4.1 of the GFDL ESM4.1, in which we 
replace the prescribed distribution of aerosol optical properties with a newly implemented prognostic simulation 

Figure 8.  Timeseries of total aerosol optical depth over oceans for PRESC and VOLC sensitivity runs compared against 
Advanced Very High Resolution Radiometer from 1991 to 1993. The default VOLC simulation is indicated by the red line, 
and the VOLC_1 simulation is indicated by the purple line.
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of stratospheric sulfur aerosols, driven by volcanic and non-volcanic sources. Since the developments are more 
relevant for volcanically active years, we used the Mt. Pinatubo eruption as a benchmark to evaluate the simu-
lated stratospheric aerosol distribution and properties and explore their sensitivity to uncertainties in emission 
amount, injection height, and particle size. We explore the sensitivity of sulfate mass burden and AOD to various 
parameters (injection amount and height of SO2 as well as dry effective radius of sulfate), in recognition of the 
importance of this sensitivity for understanding the response and impact of climate intervention. We find that, 
for our model, stratospheric sulfate mass burden and AOD are most sensitive to volcanic SO2 injection height. 
We identify combinations of SO2 injection height and amount that best match observations, although the optimal 
parameters vary based on the observational metric used.

Accurately simulating volcanic eruptions and their climate effects requires further improvements of our model, 
and several challenges remain for future studies. First, there are few measurements available for evaluation of 
our simulation of the Mt. Pinatubo eruption. Second, missing aerosol size evolution in our model likely led to 
inaccurate sedimentation, given that in the current version, sulfate dry effective radius is only used in the sedi-
mentation calculation and remains constant. With a dynamic size distribution, we would be able to track the 
growth of particles, allowing for quicker settling of bigger particles in the initial months after a major volcanic 
eruption. Third, qualitative comparisons against other modeling studies show that different dynamics and physics 
parameterizations could lead to varying results using the same set of parameters described here, and a thorough 
modeling study would be needed to investigate the impact that different dynamics schemes have on stratospheric 
volcanic aerosols.

Figure 10.  Top of the atmosphere near global (60°S–60°N) radiation anomalies (W/m 2) for PRESC (blue) and 
VOLC_1(black) simulations from 1989 to 1994 (vs. 1985–1989 base period) compared against ERBS (red).

Figure 9.  Top of the atmosphere all-sky global net radiation fluxes (W/m 2) for PRESC and VOLC_1 simulations from 1989 
to 1994.



Journal of Advances in Modeling Earth Systems

GAO ET AL.

10.1029/2022MS003532

11 of 13

Data Availability Statement
The model code is provided online at http://doi.org/10.5281/zenodo.3836405 (Dunne et  al.,  2020a). The 
input data used in the simulations are provided at GFDL’s Data Portal ftp://data1.gfdl.noaa.gov/users/ESM4/
ESM4Documentation/GFDL-ESM4/inputData/ESM4_rundir.tar.gz (Dunne et al., 2020b). The simulation output 
is provided online at https://doi.org/10.5281/zenodo.7799138 (Gao, 2023). MODIS data are available at http://
dx.doi.org/10.5067/MODIS/MOD04_L2.006 ((Terra and Aqua, Levy et al., 2015)), MISR data are available at 
https://doi.org/10.5067/Terra/MISR/MIL3YRD_L3.005 (NASA/LARC/SD/ASDC, 2008), and AVHRR data are 
available at https://doi.org/10.25921/w3zj-4y48 (Zhao & NOAA CDR Program et al., 2022).
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